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Abstract-Computer simulation was conducted to study a modified floating-zone crystal growth process, 
in which the melt surface is mostly covered with a heated ring. The growth of 6 mm diameter single crystals 
of NaNO, was considered, and the effects of the following parameters were studied: (1) temperature of the 
ring, (2) growth rate, (3) surface tension-temperature coefficient of the melt, (4) thermal expansion 
coefficient of the melt, and (5) gravity. It was demonstrated that ~e~~apillary convection in the melt 
zone is reduced si~i~~antly in this modified process. The model was checked against the measured lengths 
of the meniscus near the growth front and axial temperature distribution in a growing crystal, and the 

agreement was good. 

INTRODUCTION 

FIGURE l(a) illustrates the crystal growth process 
which has been developed recently by modifying the 
conventional floating-zone process. As shown, a melt 
zone is produced in the feed rod by a heated ring and 
the ring covers most of the surface of the melt zone. 
The ring is an extension from the bottom of the disk, 
which is supported and heated by a resistance sheet 
heater. The sheet heater has a round hole to let the 
ring pass through. The thermocouple helps control 
heating of the ring during crystal growth. As the ring 
travels upward, the feed rod continues to melt and 
the crystal continues to grow. This modified process 
differs from the conventional floating-zone process 
mainly in that the surface of the melt zone in the latter 
is completely free. 

The advantages of the modified process are as 
follows. First, the cross-sectional uniformity and 
surface smoothness of the resultant crystals are im- 
proved. Second, strong, oscillatory the~o~apillary 
convection in the melt zone can be avoided. Third, 
when used under normal gravity, the stability of the 
melt zone is greater. The disadvantage, however, is 
that it is limited by the requirement of chemical com- 
patibility between the melt and the ring. A recent 
survey by one of the authors [l] has indicated that 
crystals of many different materials can, in fact, be 
grown by this process. 

In a recent study [2], NaNO, single crystals of 6 
mm diameter were grown by the modified process. 
These crystals exhibited a very uniform diameter and 
smooth surface. The free surface near the growth front 
(i.e. the melt/crystal interface) was observed through 
a macrophoto camera system. It was observed that 
tiny impurity particles moved in a loop-like fashion 
near the free surface. These particles moved down- 
ward across the free surface, and upward back to the 

top of the free surface penetrating only slightly into 
the melt zone. The lengths of the free surface were 
measured from photographs taken during crystal 
growth. A K-type thermocouple of 0.13 mm wire 
diameter was placed at the centerline of the melt zone 
near the growth front. The axial temperature dis- 
tribution in the crystal was measured as the growth 
front continued to advance beyond the the~ocouple. 
It was also observed that the temperature of the ring 
was about 4°C lower at the bottom than at the top. 

The purpose of the present study is to better under- 
stand this modified floating-zone process, through 
computer simulation of heat transfer and fluid flow in 
the melt zone. The effect of heat transfer and fluid 
flow on the unknown shapes of the melt/solid (i.e. 
melt/crystal and melt/feed) interfaces is of particular 
interest to us. Another modified floating-zone process 
was also simulated recently, in which the extension 
from the bottom of the disk is in the form of a round 
step and a small hole is located at the center of the 
disk/step [3]. Due to the small size of the hole, the 
melt/solid interfaces are essentially fiat under normal 
crystal growth conditions and natural convection in 
the melt zone is negligible. As will be shown in the 
present study, the situation here is the opposite, i.e. the 
interfaces are rather convex and natural convection 
prevails in the bulk melt zone. 

PHYSICAL SYSTEM AND PROPERTIES 

Convection in the melt is considered to be steady, 
axisymmetricai, laminar and Newtonian. Tem- 
perature measurements indicated no tem~rature 
fluctuations due to oscillatory flow, thus suggesting 
steady-state flow in the melt. Since the melt of NaNO, 
is transparent, the melt/solid interfaces could be 
observed during crystal growth. The fact that these 
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NOMENCLATURE 

specific heat 
unit vector in z-direction 
gravitational acceleration 

heat transfer coefficient 
heat of fusion per unit solid 

mass 
thermal conductivity 
unit normal vector 

cylindrical coordinate 

radius of feed rod 
temperature 
ambient temperature 

melting point 
temperature of the ring 
temperature far away from melt zone 
r-component of velocity 

pulling speed or growth rate 

1’ z-component of velocity 
z cylindrical coordinate. 

Greek symbols 

Y surface tension 
t‘ emissivity 

YI curvilinear coordinate 

p viscosity 

5 curvilinear coordinate 

P density 
Stefan-Boltzmann constant 

; stream function 
w vorticity. 

Subscripts 
L liquid or melt at melting point 

S solid. 

interfaces were axisymmetrical suggests that the Table 1. Physical properties of NaNO, [4-71 
assumption of axisymmetry is reasonable. The free 

surfaces of the melt are assumed to be cylindrical. In 
reality, the free surface below the ring is very close to 

& = 306.8”C 
= 182J8’ 

,, = 9.0x 10e4 W cm-* “Cm’ 
being exactly cylindrical. The free surface above the ks =5.65x 10m3+33.5(T-230)x IO-‘W cm-’ “C’ 
ring, on the other hand, is somewhat like a bell shape, k, =5.65x IO-‘+47.7(T-T,)x lO~‘Wcm~~ “C-’ 

as shown schematically in Fig. l(a). Since this free cos = C,, = 1.255+2.18(T-100)x 1O-3 J g-l “C-l 

surface is separated from the growth front by the ring, 
; 

= 0.7 
= 6.6 x 1om4 “C’ 

its exact shape is not expected to affect the resultant 
crystal significantly. 

ay/aT = -0.056 dyne cm- ’ ‘C ’ 
p = 0.0302-1.533 x 1O-4 (T-T,) g cm- ’ se’ 

The relevant dimensions of the physical system are Ps = 2.118gcm-i 

as follows. The feed rod, the outer surface of the ring pL = 1.904gcm-’ 

and the single crystal are all 6 mm in diameter. The 
wall thickness and height of the aluminum ring are 
0.5 and 3 mm, respectively. The physical properties of 
NaNO, are given in Table 1. 

GOVERNING EQUATIONS AND BOUNDARY 

CONDITIONS 

The cylindrical coordinates (Y, z) are shown in Fig. 
l(b). For convenience, the ring and the coordinates 
are considered to be stationary, while the crystal and 
the feed rod are moving in the negative z-direction. 
The division of the physical system into one- and two- 
dimensional regions for heat transfer computation 
will be explained later. 

The governing equations [8] are as follows. 

Equation of motion 

Energy equation 

+f rkg = 0. (3) 
( > 

The stream function $ and vorticity o in the above 
equations are defined in terms of the radial velocity u 
and the axial velocity v as follows : 

1 ii+ 1 a* u= --- 
pLr az’ 

u=p- 
pLr ar 

(4) 

au au 
w=z-ar’ (5) 

Stream equation The thermal boundary conditions are as follows : 
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FIG. 1. A modified floating-zone crystal growth process in which a heated ring covers most of the surface 
of the melt zone. (a) Schematic illustration. (b) Division of the physical system into one- and two- 

dimensional regions to reduce the load of computation. 

(1) Along the centerline of the system 

aT 
ar = 0 due to symmetry. 

(2) At the melt/ring interface 

T= T, 

where T, is the temperature of the heated ring. It is 
assumed to increase linearly from the bottom of the 
ring to the top. 

(3) At the melt/solid interfaces 

and 

T= T, 

k(n*VT)I,-k(n*VT)l,+psAHU,n*e, = 0 

where n is the unit normal vector pointing into the 
melt. 

(4) On the surfaces of the feed rod, melt and crystal 

-k(n*VT) = h(T-T,)+m(T“-T:) 

where n is the unit normal vector pointing radially 
outward. 

(5) Far away from the melt zone 

T= T,,,. 

T,,, is the temperature in the feed rod or crystal at a 
location far away from the melt zone. The implemen- 
tation of this boundary condition will be described 
later in ‘Method of Solution’. 

The fluid-flow boundary conditions are as follows : 

(1) Along the centerline of the melt zone 

The stream function is set to zero at the centerline as 
a reference. The zero vorticity is the result of 
au/& = avjar = 0 at the centerline. 

(2) At the melt/ring interface 

ICI = :~su,R; 

au 
w = z (horizontal portion) 

au 
w = - ar (vertical portion) 

where R, is the diameter of the crystal. The equation 
for $ is obtained by integrating equation (4) with 

v = UOPSIPL. 

(3) At the melt/solid interfaces 

* = 2psUor2 

au alI 
“=az-ar’ 

(4) On the free surface of the melt 

ti = :~sUoRi 

au I ay aT WE __=___ 
ar pdTaz 

where ay/aT is the surface tension-temperature co- 
efficient of the melt. 

COORDINATE TRANSFORMATION 

Due to the fact that the melt/solid interface is not 
l_b = 0, w = 0. flat but curved, the Stefan condition and the vor- 
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ticity boundary condition in terms of the cylindrical 
coordinate system (r, z), i.e. Thermal Boundary Con- 
dition 3 and Fluid-flow Boundary Condition 3, cannot 
be properly implemented. In view of this, we have 
transformed the above governing equations and 
boundary conditions into those in terms of general 
(nonorthogonal) curvilinear coordinates (q, 5) which 
fit all the physical boundaries including the melt/solid 
interface. In this way, all the boundary conditions can 
be treated accurately. 

Following the procedure of Thompson et al. [9], 

equations (l), (2) and (3) can be transformed into the 
following general form : 

a”(4) 
__ +911 852 1 +dpp +d,,, + d,, = 0. (6) 

Coefficients a, b, c and d in the above equation are 
given in Table 2 for 4 = II/, w and T, respectively. 
Other coefficients in the same equation are defined as 
follows : 

d _ _ 2bs12 a’(4) +’ ab 
nor - Tarlag J g22& 

do, = Jd 

9,1= (gJ+(;J 

922 = (gJ+(gJ 

912 = @($)+@($) 

J=@(a)-(a)@ 

P= -($)/(‘)’ 

Q=- {( a2 aZ a2r 
aratjavze$~$)+2(~$$$ 

The transformed thermal boundary conditions are 
as follows : 

(1) Along the centerline of the system 

dT 

&=O. 

Table 2. Coefficients 0, h, c and din equation (6) 

l$u h ‘ u’ 

0, 

1 1 
w Pr 

p&j? aZaT dzaT ._ 
r r J [ -- al af7 all at 1 

T C, kr 1 0 

(2) At the melt/ring interface 

T= T,. 

(3) At the melt/solid interfaces 

T= T, 

and 

k(n*VT)ls-k(n*VT)J,+psAHU,n~e, = 0. 

(4) On the surfaces of the feed rod, melt and crystal 

-k(n*VT) = h(T-T,)+w(T4-Ti). 

(5) Far away from the melt zone 

T= T,,,. 

The transformed fluid-flow boundary conditions 
are as follows : 

(1) Along the centerline of the melt zone 

$=O, w=o. 

(2) At the melt/ring interface 

i+k = :psUoR; 

w = - 3 $ (horizontal portion) 

w = - s 3 (vertical portion). 
L 

(3) At the melt/solid interfaces 

II, = fpsUor2 

(4) On this free surface of the melt 

ti = :psUoRi 

I ayaT w= -.--, 
id122 aT at 

METHOD OF SOLUTION 

The grid spacing in the physicai domain is non- 
uniform, i.e. being finer near the melt/solid and melt/ 
air interfaces in order to treat the higher velocity and 
temperature gradients at these locations more accu- 
rately. The grid spacing in the computational (i.e. 
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transformed) domain, however, is uniform with Aq = 
At = constant. In this way, second order accuracy is 
retained in the finite difference approximations. 
Furthermore, a special procedure has been used in 
grid generation to ensure that &/at is continuous at 
both 5, and [,,, where 5, and &, are the values of 5 at 
the top and bottom of the ring, respectively. In this 
way, az/ar can be determined accurately at both 5, 
and tb. 

In order to reduce the load of computation, the 
material being considered is divided into three regions 
(Fig. l(b)), i.e. an inner region which consists of the 
melt zone and the solid material near the melt/solid 
interfaces, an outer region in the crystal and an outer 
region in the feed rod. Heat transfer is considered to 
be two-dimensional in the inner region, but is approxi- 
mated as one-dimensional in the outer ones. The inner 
region is made long enough so that the two-dimen- 
sional temperature distribution in this region becomes 
essentially one-dimensional (i.e. uniform in the radial 
direction) at its two ends. For the present problem 
involving a small radius (e.g. R, = 0.3 cm), we find a 
length of about 35R,, to be sufficient; further length 
increases produce no significant changes. In the two 
outer regions, which are ten times longer than the 
inner one, heat transfer is described by the following 
equation : 

-u~Pscp~+$ z -&T-T,) ( > 0 

+oe(T4- T,*)] = 0. (7) 

Heat flow from the inner region across the boundary 
at z = 0 or z2 into the outer region can be described 
as follows : 

From the result of heat flow computation in the 
inner region, the LHS of equation (8) can be calcu- 
lated. The temperature gradients dT/dz at z = 0 and 
dT/dz at z = z2, along with dT/dz = 0 at both z, 
and z3, are used as boundary conditions for solving 
equation (7) in the outer regions. The newly calculated 
temperatures at z = 0 and z2, i.e. Tljz in Thermal 
Boundary Condition 5, are then used as updated 
boundary conditions for the next iteration of heat 
flow computation in the inner region. This procedure 
is repeated until the temperature field converges. A 
similar overall approach has been used by Duranceau 
and Brown [lo] for conduction heat-flow computa- 
tion in conventional floating-zone crystal growth. 

The numerical method used in the present study is 
similar to that described elsewhere [ 111 and hence will 
not be repeated here. 

RESULTS AND DISCUSSION 

Figure 2(a) shows a portion of a grid system used 
for computation. This grid system, like all other grid 
systems in this study, was updated each time the 
melt/solid interfaces were updated during compu- 
tation. As shown, the grid spacing is finer near all 
melt/solid and melt/air interfaces. The mesh is 21 x 21 
in the feed rod, 21 x 66 in the melt zone (and the ring), 
and 21 x 21 in the crystal. A similar but finer grid 
system is shown in Fig. 2(b), where the mesh is 41 x 21 
in the feed rod, 41 x 81 in the melt zone (and the ring), 
and 41 x 21 in the crystal. The calculated results based 
on the grid systems in Figs. 2(a) and (b) are shown in 
Figs. 3(a) and (b), respectively. A secondary flow 
loop about two orders of magnitude weaker than the 
surface flow loops is shown in Fig. 3(b) near the upper 
inner comer of the ring. The asterisk indicates that 
the stream function of the flow line is zero. Although 
this secondary flow loop is not shown in Fig. 3(a), the 
calculated results in Figs. 3(a) and (b) are still very 
close to each other. Therefore, we have chosen to use 
the coarser grid system for all cases of computation, 
except for the case of a higher ring temperature (Fig. 
5) where the free surface is longer. 

Figure 3(a) shows the calculated result for a crystal 
growing with a ring whose temperature varies linearly 
from 321°C at the bottom to 325°C at the top. This 
temperature distribution will be used throughout the 
present study, unless otherwise stated. The growth 
rate is 5.2 mm h- ‘, i.e. U. = - 5.2 mm h- ‘. This ring 
temperature and growth rate were used to grow a 6 
mm diameter single crystal of NaNO,. The two flow 
loops near the free surface are due to thermocapillary 
convection. In other words, thermocapillary con- 
vection is limited to very near the free surface. This is 
significantly different from the case of conventional 
floating-zone crystal growth, where thermocapillary 
convection can penetrate deep into the melt zone [ 121. 
Since ay/aT is negative, the upper loop is clockwise 
while the lower is counterclockwise. At the center of 
the upper loop the stream function is at its minimum, 
i.e. $min = -5.95 x 10e3 g s- ‘, while at the center of 
the lower loop the stream function is at its maximum, 
i.e. timaX = 3.37 x 10m3 g s- ‘. The increment in the 
value of the stream function, i.e. All/, is 5.0 x 10m4 g 
s-l. The fastest surface velocities are u,,, = 2.37 cm 
S - ’ and v,,,~,, = - 2.26 cm s- ’ for the upper and lower 
loops, respectively. Since the surface flow is directed 
toward the melt/solid interfaces, the portions of the 
isotherms near the free surface are pushed toward 
these interfaces, resulting in melting back of both the 
feed rod and the crystal near the free surface. 

The flow loop inside the ring is due to natural convec- 
tion. The melt near the inner wall of the ring is heated 
by the ring. Due to thermal expansion it floats up, pro- 
ducing a clockwise natural convection loop. At the 
center of the loop the stream function is at its minimum, 
i.e. tjmin = -2.32 x lop3 g sP ‘. The fastest velocity is 
v,,,~,, = - 0.207 cm s- ’ and is located at the centerline. 
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Centerline Surface Centerline Surface 
(a) (bl 

FIG. 2. Grid systems used for computation. (a) A portion of a coarser grid system. (b) A portion of a finer 
grid system. 

The isotherms are shown with an increment of 

AT = (Tt - T,)/5 in both the melt and solid, where T, 

is the temperature at the top of the ring. The same 
definition of AT will be used throughout the rest of 
this report. 

The calculated length of the free surface near the 
growth front is 0.41 mm. Due to this rather small 
length, we were unable to measure the surface veloci- 
ties during crystal growth. However, from the close- 
up photographs, the length of the free surface near 

the growth front was found to be about 0.43 mm. The 
calculated value of 0.41 mm, therefore, appears to be 
in good agreement with the observed one. As already 
mentioned, tiny impurity particles were observed to 
move downward across the free surface, from the 
bottom of the ring to the growth front. These particles 
then moved upwards back to the bottom of the ring 
in a loop-like fashion, penetrating only slightly into 

the melt. The calculated thermocapillary flow pattern 
near the growth front is consistent with this obser- 
vation. The calculated axial temperature distribution 
along the crystal is also in good agreement with the 
measured one, as shown in Fig. 4. 

single crystal of NaNO,. The two flow loops near the 

free surface are similar to those shown previously in 
Fig. 3(a) but significantly stronger. At the center of 
the upper loop $m,, = -1.17x lo-* g SK’, while at 
the center of the lower loop $,,,,, = 6.16 x lo- 3 g s- ‘. 
The fastest surface velocities are ZI_ = 2.29 cm s- ’ 
and u,,, = -2.24 cm s-’ for the upper and lower 
loops, respectively. These velocities are close to those 
in the case of Fig. 3(a). Due to the higher ring tem- 
perature, the natural convection loop inside the ring 

is also stronger, tirnLn being -3.34 x lo--’ g s ‘. Due 
to the stronger thermocapillary and natural convec- 
tion, the isotherms are rather distorted. 

The average zone length is greater than that shown 
in Fig. 3(a). The calculated length of the free surface 
near the growth front is 0.80 mm, which is in good 
agreement with the observed value of about 0.81 mm. 

Eflect of growth rate 

Effect of ring temperature 
Figure 5 shows the calculated result for a crystal 

growing with a ring whose temperature varies linearly 
from 325’C at the bottom to 328°C at the top. The 
growth rate is 5.2 mm h- ‘. This ring temperature and 

Figure 6 shows the calculated result for a crystal 
growing with a five times faster rate of 26 mm hP ‘. 
As compared to Fig. 3(a), the growth front becomes 
less convex, while the melting front is more convex. 
Also, the overall position of the melt zone shifts down- 
ward. The stream functions are tjrn,” = -4.42 x lop3 
g s-1 and I/I,,,~~ =4.18x lo-’ g s-’ at the centers of 
the upper and lower surface flow loops, respectively. 
The surface velocities are ZI,,, = 2.55 cm s-’ and 

%U, = - 2.07 cm s-- ’ for the upper and lower surface 
growth rate were also used to grow a 6 mm diameter flow loops, respectively. A very small flow loop is 
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Streamlines Isotherms 

(a) 

3.428 x 10-S 

Streamlines Isotherms 

(b) 
FIG. 3. Calculated results based on two different grid systems. 
(a) The coarser grid system in Fig. 2(a). (b) The finer grid 

system in Fig. 2(b). 

300 - Calculated 
---- Measured 

0 5 10 1.5 

Distance from growth front (mm) 

FIG. 4. Calculated and measured temperature distributions 
along the axis of a growing crystal. 

induced by the upper surface-flow loop and is counter- 
clockwise in direction. 

Eflect of surface tension-temperature coeficient 
Figures 7(a) and (b) show the calculated results for 

two less negative values of ay/aT, i.e. -0.028 and 0 
dyne cm- ’ “C- ‘, respectively. The growth rate is 5.2 
mm hh ‘. In Fig. 7(a) the two flow loops near the 
free surface are significantly weaker than those shown 

previously in Fig. 3(a) for ay/aT equal to -0.056 
dyne cm-’ “Cl. At the center of the upper loop 
$min = -2.93 x 10m3 g s- ‘, while at the center of the 
lower loop ijmaX = 1.92 x 10e3 g s- ‘. The fastest 
surface velocities are v,,,~~ = 1.59 cm s-’ and 

ty_: 6.159x 10-3 

I 
Streamlines Isotherms 

FIG. 5. Calculated result based on a ring temperature higher 
than that in Fig. 3. 



w_= 4.180 x 10-3 
y_= 1.922 x 10-a 

v 

Streamlines Isotherms Streamlines Isotherms 
FIG, 6. Calculated result based on a growth rate which is five 

times that in Fig. 3(a). (al 

vmi, = - 1.52 cm s- ’ for the upper and lower loops, 
respectively. This weaker thermocapillary convection 
results in a melt zone which is shorter than that in 
Fig. 3(a). In Fig. 7(b) there are no longer any thermo- 
capillary flow loops. The two very weak flow Ioops 
near the free surface are induced by the natural con- 
vection loop inside the ring, both being counter- 
clockwise in direction and of the order of 10e5 g s- ‘. 

F%edRod 

Due to the absence of thermocapillary convection, the 
melt/solid interfaces no longer melt back near the free w___= 2.200 x 10-S B - 

surface. 
The calculated temperature gradients in the melt at 

and normal to the growth front (XI’@) are shown 
in Fig. 8 as a function of radius and ay/aT. Away from 
the free surface aT/dn is insensitive to the variation 
in ay/U. Near the free surface, however, the oppo- 
site is true. Without thermocapillary convection 
(ay/aT= 0), the isotherms near the free surface are 
essentially parallel to the growth front. The slight 
increase in aTjan near the free surface is due to surface 
heat losses. With strong thermocapillary convection 
(ay/aT = -0.056 dyne cm- ’ “C- I), however, the sur- 
face flow pattern is such that the portion of the iso- 
therms very close to the free surface is pushed against 
the growth front, but the portion slightiy away from 
the free surface is pulled away from it. Consequently, 
the maximum dT/an is located at the free surface and 
a minimum aTian exists just slightly away from the 
free surface. Since heat transfer to the local growth 
front is proportional to the local Z!“/dn, the local 
growth front very close to the free surface is melted 
back, as shown in Fig. 3(a). On the contrary, a very 

-2.036 x 10-3 

v,,= 1.300 x 10-5 

Streamlines Isotherms 

(b1 

(a) -0.028 dyne cm-’ “C-‘. (b) 0 dyne cm-’ “C-‘. 
FIG. 7. Calculated results based on reduced valuy pf $/dT, *__ . . ^ . 

v_,_= -2.928 x lo-3 I- 
..u. 
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FIG. 8. Calculated temperature gradients in the melt at and 
normal to the growth front as a function of radius for three 

different levels of rTyjr3T. 

small hump forms on the growth front just slightly 
away from the free surface. 

Effect of thermal expansion coejkient 
Figure 9 shows the calculated result for the case 

where the thermal expansion coefficient of the melt, 
fi, is doubled. As shown, the natural convection loop 
inside the ring is significantly stronger than that shown 
previously in Fig. 3(a), I,$,,,~” being - 3.98 x lo-’ g s- ’ 
at the center of the loop. As compared to Fig. 3(a), 
the length of the melt zone is essentially the same 
near the free surface, but significantly larger near the 
centerline. It appears that due to the stronger natural 

FeedROd 

vm= -6.499 x 10-a 

Streamlines Isotherms 
FIG. 9. Calculated result based on a thermal expansion 

coefficient which is twice that in Fig. 3(a). 

Streamlines Isotherms 
FIG. 10. Calculated result based on a zero gravitational 

acceleration. 

convection, heat transfer from the ring to the center- 
line of the melt zone is improved significantly. 

Effect of gravity 
Figure 10 shows the calculated result for the case 

where the gravitational acceleration, g, is reduced to 
zero, which is equivalent to crystal growth under the 
microgravity condition. As shown, natural convection 
no longer exists in the melt zone. The very weak flow 
loop inside the ring is induced by the upper surface 
flow loop, and is counterclockwise in direction, the 
stream function at the center of the loop being 
$,,,., = 9.4 x 10P6 g s- ‘. Due to the absence of natural 
convection in the melt, the melting and growth fronts 
become more like the mirror image of each other. As 
compared to Fig. 3(a), the zone length is essentially the 
same near the free surface, but significantly shorter 
near the centerline. Due to the absence of natural 
convection, heat transfer from the ring to the center- 
line of the melt zone is by conduction only. To avoid 
freezing at the centerline, either the length or the tem- 
perature of the ring should be increased. 

CONCLUSIONS 

Computer simulation has been conducted to study 
heat transfer and fluid flow in the melt zone in a 
modified floating-zone crystal growth process, in 
which a heated ring covers most of the surface of the 
melt zone. The conclusions are as follows : 

(1) The computer model agrees well with the 
observed lengths of the free surface near the growth 
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front, and the measured axial temperature distri- 
bution in a crystal. 

(2) Thermocapillary convection is limited to near 
the free surface of the melt zone, and is significantly 

weaker than that in the conventional floating-zone 

process. 

(3) Both thermocapillary convection and natural 

convection increase with increasing temperature of 

the ring. 
(4) The length of the melt zone at its centerline is 

affected significantly by the extent of natural con- 

vection inside the ring. This length is significantly 

reduced under microgravity. 
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TRANSFERT THERMIQUE ET MOUVEMENT FLUIDE DANS LA CROISSANCE D’UNE 
ZONE CRISTALLINE FLOTTANTE AVEC UNE SURFACE DE BAIN PARTIELLEMENT 

COUVERTE 

RCsmn&On conduit une simulation numtrique du mecanisme de croissance d’une zone cristalline flottante, 
dans laquelle la surface du bain est partiellement couverte par un anneau chauffe. On considere la croissance 
de cristaux uniques de NaNO,, de 6 mm de diametre, et les effets des parametres suivants sont etudies : (I) 
temperature de l’anneau, (2) vitesse de croissance, (3) coefficient de temperature de la tension interfaciale 
du bain, (4) coefficient de dilatation thermique du bain et (5) pesanteur. On montre que la convection 
thermocapillaire dans la zone fondue est significativement reduite dans ce mecanisme modifie. Le modtle 
est favorablement test6 par les longueurs mesuries du m&risque p&s du front de croissance et par la 

distribution de temperature dans le cristal. 

WARMEUBERGANG UND STRGMUNG BEIM WACHSTUM SCHWEBENDER 
KRISTALLE MIT GR&STENTEILS BEDECKTER OBERFLACHE DER SCHMELZE 

Zusammeofassung-Mit Hilfe einer Rechnersimulation wird ein modifizierter ProzeB des Wachstums 
schwebender Kristalle untersucht, bei dem die Oberfllche der Schmelze gr%tenteils mit einem beheizten 
Ring bedeckt ist. Es wird das Wachstum eines NaNO,-Einkristalls (Durchmesser 6 mm) betrachtet. Der 
EinfluB folgender Parameter wird untersucht: (1) Temperatur des Rings, (2) Wachstumsgeschwindigkeit, 
(3) Temperaturkoeffizient der Oberhlchenspannung der Schmelze, (4) thermischer AusdehnungskoeIBzient 
der Schmelze und (5) Schwerkraft. Es wird gezeigt, daD die durch Kapillarkrafte angetriebene Konvektion 
in der Schmelzzone signifikant durch dieses Verfahren verringert wird. Das Model1 wird anhand von 
MeBdaten fiir die Lange des Meniskus in der N%he der Wachstumsfront sowie die axiale Temperatur- 

verteihmg in einem wachsenden Kristall verglichen, wobei sich gute Ubereinstimmung ergibt. 

TEIIJIOI-IEPEHOC W TESEHHE XGIAKOCTH I-IPH POCTE KPHCTAJIJIA B 30HE 
@JIOTAHHM C I-IO’ITH HOJIHOCTbIO IIOKPbITOH HOBEPXHOCTbIO PACI-IJIABA 

AussoTanna--Hponeneno Monensrpoeamse ria 3BM Monri&mirpoeamioro npouecca pocra Kpnc’ranna B 

30HC &lOTiU@iH, lIfXl KOTOPOM IIOBqXXNXb pWXLElBa ITOSTH IIOJnXXXbH) IlOKpblTa Hal-pCTl.IM KOJIbuOM. 
PaccMarpaeanricb pocr e mrms=nibrx K~HCMMOB NaNO, &niahfe’rpoM 6 MM, a rarcxe nnmnnie ria 
nponecc cnexyromrix napahserpon: (1) TeMneparypbr Konbna, (2) cxopocrri pocra xpsicranna, (3) ro3@- 
@irmenra IIOB~~~HOCTHO~~ Hanxens pacnnana, (4) xos+&imierira rennonoro pacnnipemia pacnnaea 
H (5) CAnEd TIIXCCTA. nOKZK%%HO, ‘#TO IIpE AmHOM MOJ’@Hl&H,,OBaHHOM “$JOWX‘X TCpMOKZXUL”JIKpHaR 

KOHWKWX B 30He pacnnana cymecrnemio ybsenbmaercn. Honyqeeo xopomee cornacAe hfexrny pesynb- 
TaTaMH IIPeJUlOXCHHOii MOACJIE H ECMq.WXUibZMH &JIHHaMW MCHiiCKB S6JIH3H &OHTa POCTa H aXC%anb- 

H~IM pacnpenenemieM TeMnepaTyp B pacrymeh4 pprmanne. 


