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Abstract—Computer simulation was conducted to study a modified floating-zone crystal growth process,
in which the melt surface is mostly covered with a heated ring. The growth of 6 mm diameter single crystals
of NaNOQ; was considered, and the effects of the following parameters were studied: (1) temperature of the
ring, (2) growth rate, (3) surface tension-temperature coefficient of the melt, (4) thermal expansion
coefficient of the melt, and (5) gravity. It was demonstrated that thermocapillary convection in the melt
zone is reduced significantly in this modified process. The model was checked against the measured lengths
of the meniscus near the growth front and axial temperature distribution in a growing crystal, and the
agreement was good.

INTRODUCTION

Ficure 1(a) illustrates the crystal growth process
which has been developed recently by modifying the
conventional floating-zone process. As shown, a melt
zone is produced in the feed rod by a heated ring and
the ring covers most of the surface of the melt zone.
The ring is an extension from the bottom of the disk,
which is supported and heated by a resistance sheet
heater. The sheet heater has a round hole to let the
ring pass through. The thermocouple helps control
heating of the ring during crystal growth. As the ring
travels upward, the feed rod continues to melt and
the crystal continues to grow. This modified process
differs from the conventional floating-zone process
mainly in that the surface of the melt zone in the latter
is completely free.

The advantages of the modified process are as
follows. First, the cross-sectional uniformity and
surface smoothness of the resultant crystals are im-
proved. Second, strong, oscillatory thermocapillary
convection in the melt zone can be avoided. Third,
when used under normal gravity, the stability of the
melt zone is greater. The disadvantage, however, is
that it is limited by the requirement of chemical com-
patibility between the melt and the ring. A recent
survey by one of the authors {1] has indicated that
crystals of many different materials can, in fact, be
grown by this process.

In a recent study [2], NaNQ, single crystals of 6
mm diameter were grown by the modified process.
These crystals exhibited a very uniform diameter and
smooth surface. The free surface near the growth front
(i.e. the melt/crystal interface) was observed through
a macrophoto camera system. It was observed that
tiny impurity particles moved in a loop-like fashion
near the free surface. These particles moved down-
ward across the free surface, and upward back to the

top of the free surface penetrating only slightly into
the melt zone. The lengths of the free surface were
measured from photographs taken during crystal
growth. A K-type thermocouple of 0.13 mm wire
diameter was placed at the centerline of the melt zone
near the growth front. The axial temperature dis-
tribution in the crystal was measured as the growth
front continued to advance beyond the thermocouple.
It was also observed that the temperature of the ring
was about 4°C lower at the bottom than at the top.

The purpose of the present study is to better under-
stand this modified floating-zone process, through
computer simulation of heat transfer and fluid flow in
the melt zone. The effect of heat transfer and fluid
flow on the unknown shapes of the melt/solid (i.e.
melt/crystal and melt/feed) interfaces is of particular
interest to us. Another modified floating-zone process
was also simulated recently, in which the extension
from the bottom of the disk is in the form of a round
step and a small hole is located at the center of the
disk/step [3]. Due to the small size of the hole, the
melt/solid interfaces are essentially flat under normal
crystal growth conditions and natural convection in
the melt zone is negligible. As will be shown in the
present study, the situation here is the opposite, i.e. the
interfaces are rather convex and natural convection
prevails in the bulk melt zone.

PHYSICAL SYSTEM AND PROPERTIES

Convection in the melt is considered to be steady,
axisymmetrical, laminar and Newtonian. Tem-
perature measurements indicated no temperature
fluctuations due to oscillatory flow, thus suggesting
steady-state flow in the melt. Since the melt of NaNOQ,;
is transparent, the melt/solid interfaces could be
observed during crystal growth. The fact that these
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NOMENCLATURE

C,  specific heat v z-component of velocity

e.  unit vector in z-direction z cylindrical coordinate.

[ gravitational acceleration

h heat transfer coeflicient Greek symbols

AH heat of fusion per unit solid Y surface tension

mass e emissivity

k thermal conductivity n curvilinear coordinate

n unit normal vector i viscosity

r cylindrical coordinate & curvilinear coordinate

R, radius of feed rod p density

T  temperature o Stefan—Boltzmann constant

7T, ambient temperature v stream function

T, melting point ®  vorticity.

T.  temperature of the ring

T, temperature far away from melt zone Subscripts

u r-component of velocity L liquid or melt at melting point

U, pulling speed or growth rate S solid.
interfaces were axisymmetrical suggests that the Table 1. Physical properties of NaNO; [4-7]
assumption of axisymmetry is reasonable. The free -
surfaces of the melt are assumed to be cylindrical. In Z'“H - ?ggf ¢,
reality, the free surface below the ring is very close to _ 9.0 x 1%-4 Wem-2°C!
being exactly cylindrical. The free surface above the 4 =35.65%x107°+33.5(T-230)x 10" Wcem™'°C™!
ring, on the other hand, is somewhat like a bell shape, k. =565x107°+47.U(T—T,)x 10" Wem ™' °C™!
as shown schematically in Fig. 1(2). Since this free Crs = Cpu = 1.255+2.18(T—100) x 107> J g=' °C™"

. . £ =0.7
§urface is separated from the growth front by the ring, —66x10-4°C-"
its exact shape is not expected to affect the resultant  gy/67 = —0.056 dynecm=' °C!
crystal significantly. u =0.0302-1.533x 107*(T—T,) gem~'s~'
The relevant dimensions of the physical system are #s ~ =2.118gem™’
oL =1904gcm™?

as follows. The feed rod, the outer surface of the ring
and the single crystal are all 6 mm in diameter. The
wall thickness and height of the aluminum ring are
0.5 and 3 mm, respectively. The physical properties of
NaNO, are given in Table 1.

GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

The cylindrical coordinates (r, z) are shown in Fig.
1(b). For convenience, the ring and the coordinates
are considered to be stationary, while the crystal and
the feed rod are moving in the negative z-direction.
The division of the physical system into one- and two-
dimensional regions for heat transfer computation
will be explained later.

The governing equations [8] are as follows.

Equation of motion

w Y 0 (w oy 10
<r (32) c'}z<r 6r»>+6r|:r ar(#rw)]
6|10 oT
+ = [;az(urw)J—pLﬂg%) =0. ()

Stream equation

o 1 oy ol 1 oy
Energy equation

oy d v 0 oT
slord)-alors) al+%)

é( oT
+8r<k6r>=0' 3)

The stream function ¥ and vorticity w in the above
equations are defined in terms of the radial velocity u
and the axial velocity v as follows:

1y 1 oy
N Y @
ou Ov

The thermal boundary conditions are as follows :



Heat transfer and fluid flow in floating-zone crystal growth

Feed
Rod

- I\

Thermocouple

Disk

Heater

Heated
Ri

g Single

Crystal

(a)

435

z=1z,
2? 1-D &
= Zz
&N d’
Feed (
Rod
—\/—
Melt
/-\\Ring
Crystal
A Z A
T d z2=0

r_Jl-D i z=1,
bid

Pull
(b)

FiG. 1. A modified floating-zone crystal growth process in which a heated ring covers most of the surface
of the melt zone. (a) Schematic illustration. (b) Division of the physical system into one- and two-
dimensional regions to reduce the load of computation.

(1) Along the centerline of the system

oT
— =0 due to symmetry.
or

(2) At the melt/ring interface

T=T,

where T, is the temperature of the heated ring. It is
assumed to increase linearly from the bottom of the
ring to the top.

(3) At the melt/solid interfaces

T=T,
and
k- VT)|s—km VT)| +psAHUn e, =0

where n is the unit normal vector pointing into the
melt.
(4) On the surfaces of the feed rod, melt and crystal

—k@-VT) = (T—T,)+eo(T*— T

where n is the unit normal vector pointing radially
outward.
(5) Far away from the melt zone

T=T,,.

T,,, is the temperature in the feed rod or crystal at a
location far away from the melt zone. The implemen-
tation of this boundary condition will be described
later in “Method of Solution’.

The fluid-flow boundary conditions are as follows :

(1) Along the centerline of the melt zone

v=0 o=0.

The stream function is set to zero at the centerline as
a reference. The zero vorticity is the result of
Ou/dz = dv/dr = 0 at the centerline.

(2) At the melt/ring interface

¥ =1psUoRG
ou . .
w == (horizontal portion)
ov ) )
w = — - (vertical portion)

or

where R, is the diameter of the crystal. The equation
for y is obtained by integrating equation (4) with

v=Upps/pL-
(3) At the melt/solid interfaces
Y= %Ps Upr?
_ du O

(j)—éz—g

(4) On the free surface of the melt

¥ = 1psUoR}
__d_1yor
or poT oz

where 0y/0T is the surface tension—temperature co-
efficient of the melt.

COORDINATE TRANSFORMATION

Due to the fact that the melt/solid interface is not
flat but is curved, the Stefan condition and the vor-
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ticity boundary condition in terms of the cylindrical
coordinate system (r, z), i.e. Thermal Boundary Con-
dition 3 and Fluid-flow Boundary Condition 3, cannot
be properly implemented. In view of this, we have
transformed the above governing equations and
boundary conditions into those in terms of general
(nonorthogonal) curvilinear coordinates (n, &) which
fit all the physical boundaries including the melt/solid
interface. In this way, all the boundary conditions can

be treated accurately.

Following the procedure of Thompson et al. [9],

equations (1), (2) and (3) can be transformed into the

following general form:

il oy 0 oy b *(co)
an (“¢ a?)‘ &(“"’%)* J[QHW“

8’ (ce)

+gn”a‘éT

Coeflicients a, b, ¢ and d in the above equation are
given in Table 2 for ¢ =¥, w and T, respectively.
Other coefficients in the same equation are defined as

follows :

o(co) 5(645)]

dpQ=bJ[P(n,c) 5y RO

dnor =

_2bg,262(6¢) 1 @
7 ameE T \924

—g”gf Tn‘f‘ glléz_glzéﬁ

(e masn) e o
Q=—oeamanr acanan) T \oyanonce

- (N

The transformed thermal boundary conditions are

as follows :
(1) Along the centerline of the system
oT

5—0.

b\ é(c) ( ob b\ d(co)
ee

]+ dPQ + dnor + dor = 0 (6)

|

)]

Table 2. Coefficients a, b, ¢ and 4 in equation (6)

a b ¢ d
W 0 ! 1
- w
pLr
w 1 g _PugBlozar ozoT
r r J |0Eon  on dE
T C kr 1 0

(2) At the melt/ring interface
T=T.,.
(3) At the melt/solid interfaces
T="T
and
k(n-VT)|s—k@-VT)| +psAHUsn-e, = 0.
(4) On the surfaces of the feed rod, melt and crystal
—km:VT) = h(T—T,)+ea(T*~T2).
(5) Far away from the melt zone
T=T,,.

The transformed fluid-low boundary conditions
are as follows:

(1) Along the centerline of the melt zone
=0 o=0.
(2) At the melt/ring interface
¥ =1psUoRG
gu T
pur? 8

__9n Y
purt? on?

(horizontal portion)

(vertical portion).

(3) At the melt/solid interfaces
Y= 3psUor?

g @_
erJz 652.

(4) On this free surface of the melt

W= %PSUOR(%
_ 1 oy oT
T ugdP oT oF

METHOD OF SOLUTION

The grid spacing in the physical domain is non-
uniform, i.e. being finer near the melt/solid and melt/
air interfaces in order to treat the higher velocity and
temperature gradients at these locations more accu-
rately. The grid spacing in the computational (i.e.
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transformed) domain, however, is uniform with Ay =
A& = constant. In this way, second order accuracy is
retained in the finite difference approximations.
Furthermore, a special procedure has been used in
grid generation to ensure that dz/d¢ is continuous at
both &, and &, where &, and &, are the values of £ at
the top and bottom of the ring, respectively. In this
way, 0z/0¢ can be determined accurately at both &,
and &,.

In order to reduce the load of computation, the
material being considered is divided into three regions
(Fig. 1(b)), i.e. an inner region which consists of the
melt zone and the solid material near the melt/solid
interfaces, an outer region in the crystal and an outer
region in the feed rod. Heat transfer is considered to
be two-dimensional in the inner region, but is approxi-
mated as one-dimensional in the outer ones. The inner
region is made long enough so that the two-dimen-
sional temperature distribution in this region becomes
essentially one-dimensional (i.e. uniform in the radial
direction) at its two ends. For the present problem
involving a small radius (e.g. R, = 0.3 cm), we find a
length of about 35R, to be sufficient; further length
increases produce no significant changes. In the two
outer regions, which are ten times longer than the
inner one, heat transfer is described by the following
equation:

—UopsC,

g d (kdT
?dz +dz

2
?>‘ R, [W(T-T,)
+oe(T* =T =0. (7)

Heat flow from the inner region across the boundary
at z = 0 or z, into the outer region can be described
as follows:

RD
—k J B_T 2nrdr =
0 aZ

z=0%orz3

daT
‘ka z=0" orzj

-nR3. (8)

From the result of heat flow computation in the
inner region, the LHS of equation (8) can be calcu-
lated. The temperature gradients d7/dz at z = 0 and
dT/dz at z = z,, along with dT/dz =0 at both z,
and z,, are used as boundary conditions for solving
equation (7) in the outer regions. The newly calculated
temperatures at z =0 and z,, i.e. T, in Thermal
Boundary Condition 5, are then used as updated
boundary conditions for the next iteration of heat
flow computation in the inner region. This procedure
is repeated until the temperature field converges. A
similar overall approach has been used by Duranceau
and Brown [10] for conduction heat-flow computa-
tion in conventional floating-zone crystal growth.

The numerical method used in the present study is
similar to that described elsewhere {11] and hence will
not be repeated here.

437

RESULTS AND DISCUSSION

Figure 2(a) shows a portion of a grid system used
for computation. This grid system, like all other grid
systems in this study, was updated each time the
melt/solid interfaces were updated during compu-
tation. As shown, the grid spacing is finer near all
melt/solid and melt/air interfaces. The mesh is 21 x 21
in the feed rod, 21 x 66 in the melt zone (and the ring),
and 21 x21 in the crystal. A similar but finer grid
system is shown in Fig. 2(b), where the mesh is 41 x 21
in the feed rod, 41 x 81 in the melt zone (and the ring),
and 41 x 21 in the crystal. The calculated results based
on the grid systems in Figs. 2(a) and (b) are shown in
Figs. 3(a) and (b), respectively. A secondary flow
loop about two orders of magnitude weaker than the
surface flow loops is shown in Fig. 3(b) near the upper
inner corner of the ring. The asterisk indicates that
the stream function of the flow line is zero. Although
this secondary flow loop is not shown in Fig. 3(a), the
calculated results in Figs. 3(a) and (b) are still very
close to each other. Therefore, we have chosen to use
the coarser grid system for all cases of computation,
except for the case of a higher ring temperature (Fig.
5) where the free surface is longer.

Figure 3(a) shows the calculated result for a crystal
growing with a ring whose temperature varies linearly
from 321°C at the bottom to 325°C at the top. This
temperature distribution will be used throughout the
present study, unless otherwise stated. The growth
rateis 5.2mmh~',i.e. Uy = —5.2mm h~". This ring
temperature and growth rate were used to grow a 6
mm diameter single crystal of NaNO,. The two flow
loops near the free surface are due to thermocapillary
convection. In other words, thermocapillary con-
vection is limited to very near the free surface. This is
significantly different from the case of conventional
floating-zone crystal growth, where thermocapillary
convection can penetrate deep into the melt zone [12].
Since 8y/0T is negative, the upper loop is clockwise
while the lower is counterclockwise. At the center of
the upper loop the stream function is at its minimum,
i€ Wmin = —5.95x 1073 g s~ !, while at the center of
the lower loop the stream function is at its maximum,
i.€. Yma = 3.37x1073 g s7'. The increment in the
value of the stream function, i.e. Ay, is 5.0x 107* g
s~ !. The fastest surface velocities are v,,, = 2.37 cm
s~ ' and v, = —2.26 cm s~ ' for the upper and lower
loops, respectively. Since the surface flow is directed
toward the melt/solid interfaces, the portions of the
isotherms near the free surface are pushed toward
these interfaces, resulting in melting back of both the
feed rod and the crystal near the free surface.

The flow loop inside the ring is due to natural convec-
tion. The melt near the inner wall of the ring is heated
by the ring. Due to thermal expansion it floats up, pro-
ducing a clockwise natural convection loop. At the
center of the loop the stream function is at its minimum,
i€ Yon= —232x1072 g s~ '. The fastest velocity is
Umin = —0.207 cm s~ ' and is located at the centerline.
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FiG. 2. Grid systems used for computation. (a) A portion of a coarser grid system. (b) A portion of a finer
grid system.

The isotherms are shown with an increment of
AT = (T,—T,)/5 in both the melt and solid, where T
is the temperature at the top of the ring. The same
definition of AT will be used throughout the rest of
this report.

The calculated length of the free surface near the
growth front is 0.41 mm. Due to this rather small
length, we were unable to measure the surface veloci-
ties during crystal growth. However, from the close-
up photographs, the length of the free surface near
the growth front was found to be about 0.43 mm. The
calculated value of 0.41 mm, therefore, appears to be
in good agreement with the observed one. As already
mentioned, tiny impurity particles were observed to
move downward across the free surface, from the
bottom of the ring to the growth front. These particles
then moved upwards back to the bottom of the ring
in a loop-like fashion, penetrating only slightly into
the melt. The calculated thermocapillary flow pattern
near the growth front is consistent with this obser-
vation. The calculated axial temperature distribution
along the crystal is also in good agreement with the
measured one, as shown in Fig. 4.

Effect of ring temperature

Figure 5 shows the calculated result for a crystal
growing with a ring whose temperature varies linearly
from 325°C at the bottom to 328°C at the top. The
growth rate is 5.2 mm h~'. This ring temperature and
growth rate were also used to grow a 6 mm diameter

single crystal of NaNQ;. The two flow loops near the
free surface are similar to those shown previously in
Fig. 3(a) but significantly stronger. At the center of
the upper 100p Y = —1.17x 1072 g s™!, while at
the center of the lower loop ¥/, = 6.16 x 1073 gs~ !,
The fastest surface velocities are v, = 2.29 cm s~
and vy, = —2.24 cm s for the upper and lower
loops, respectively. These velocities are close to those
in the case of Fig. 3(a). Due to the higher ring tem-
perature, the natural convection loop inside the ring
is also stronger, ¥, being —3.34x 107 gs~'. Due
to the stronger thermocapillary and natural convec-
tion, the isotherms are rather distorted.

The average zone length is greater than that shown
in Fig. 3(a). The calculated length of the free surface
near the growth front is 0.80 mm, which is in good
agreement with the observed value of about 0.81 mm.

Effect of growth rate

Figure 6 shows the calculated result for a crystal
growing with a five times faster rate of 26 mm h™'.
As compared to Fig. 3(a), the growth front becomes
less convex, while the melting front is more convex.
Also, the overall position of the melt zone shifts down-
ward. The stream functions are ¥/, = —4.42x 107>
gs 'and ., =4.18x10"° g s~ ' at the centers of
the upper and lower surface flow loops, respectively.
The surface velocities are vp. = 2.55 ¢cm s~ ' and
Umin = —2.07 cm s~ for the upper and lower surface
flow loops, respectively. A very small flow loop is
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F1G. 3. Calculated results based on two different grid systems.
(a) The coarser grid system in Fig. 2(a). (b) The finer grid
system in Fig. 2(b).
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F1G. 4. Calculated and measured temperature distributions
along the axis of a growing crystal.

induced by the upper surface-flow loop and is counter-
clockwise in direction.

Effect of surface tension—temperature coefficient
Figures 7(a) and (b) show the calculated results for
two less negative values of dy/dT, i.e. —0.028 and 0
dyne cm™' °C~', respectively. The growth rate is 5.2
mm h~'. In Fig. 7(a) the two flow loops near the
free surface are significantly weaker than those shown
previously in Fig. 3(a) for dy/T equal to —0.056
dyne cm™' °C~'. At the center of the upper loop
Umin = —2.93x 1077 g s~ ', while at the center of the
lower loop Y., =192x10"% g s='. The fastest
surface velocities are v, =1.59 cm s~' and

'\N{
‘_—\—

Feed Rod
Y, =-1.174x 102

-3.336 x 103

y, = 6.159x 103

Crystal

Streamlines Isotherms

F1G. 5. Calculated result based on a ring temperature higher
than that in Fig. 3.
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Feed Rod

Y =-4420x 109

9.019x 105

Melt g

-2.130 x 103
Y, .= 4180x10°

Crystal

Streamlines Isotherms

F16. 6. Calculated result based on a growth rate which is five
times that in Fig. 3(a).

Omin = — 1.52 cm s~ for the upper and lower loops,
respectively. This weaker thermocapillary convection
results in a melt zone which is shorter than that in
Fig. 3(a). In Fig. 7(b) there are no longer any thermo-
capillary flow loops. The two very weak flow loops
near the free surface are induced by the natural con-
vection loop inside the ring, both being counter-
clockwise in direction and of the order of 107 gs™ .
Due to the absence of thermocapillary convection, the
melt/solid interfaces no longer melt back near the free
surface.

The calculated temperature gradients in the melt at
and normal to the growth front (87/0n) are shown
in Fig. 8 as a function of radius and dy/07. Away from
the free surface 07/0n is insensitive to the variation
in 8y/0T. Near the free surface, however, the oppo-
site is true. Without thermocapillary convection
(8y/8T = 0), the isotherms near the free surface are
essentially parallel to the growth front. The slight
increase in 0T/0n near the free surface is due to surface
heat losses. With strong thermocapillary convection
(6y/0T = —0.056 dyne cm™ ! °C™ "), however, the sur-
face flow pattern is such that the portion of the iso-
therms very close to the free surface is pushed against
the growth front, but the portion slightly away from
the free surface is pulled away from it. Consequently,
the maximum 077/dn is located at the free surface and
a minimum 07/0n exists just slightly away from the
free surface. Since heat transfer to the local growth
front is proportional to the local d7/én, the local
growth front very close to the free surface is melted
back, as shown in Fig. 3(a). On the contrary, a very

C. W. LaN and S. Kou
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FiG. 7. Calculated results based on reduced values of 8y/0T.
(2) —0.028 dynecm ™' °C~'. (b) O dynecm ™' °C~ 1,



Heat transfer and fluid flow in floating-zone crystal growth 441

1200
£ 10007 —— N/OT =-0.05
I3 == -= Oy/dT=-0.028
R
g
&
® 6001
E
£
g 4001
E
@
[ >4
200 1
0 T r y e
0 1 2 3

Radial distance (mm)

Fi1G. 8. Calculated temperature gradients in the melt at and
normal to the growth front as a function of radius for three
different levels of dy/0T.

small hump forms on the growth front just slightly
away from the free surface.

Effect of thermal expansion coefficient

Figure 9 shows the calculated result for the case
where the thermal expansion coefficient of the melt,
B, is doubled. As shown, the natural convection loop
inside the ring is significantly stronger than that shown
previously in Fig. 3(a), {,.;, being —3.98 x 10~ 3 gs~!
at the center of the loop. As compared to Fig. 3(a),
the length of the melt zone is essentially the same
near the free surface, but significantly larger near the
centerline. It appears that due to the stronger natural

Feed Rod

Y_ =-6499x 103

-3.980 x 103

Melt

Ring

b

3.377x 103

)

f

]
Streamlines Isotherms

FiG. 9. Calculated result based on a thermal expansion
coefficient which is twice that in Fig. 3(a).
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A 9.435 x 106
Melt

Y

y__= 3426x10%

Ring

Crystal

Streamlines Isotherms

Fic. 10. Calculated result based on a zero gravitational
acceleration.

convection, heat transfer from the ring to the center-
line of the melt zone is improved significantly.

Effect of gravity

Figure 10 shows the caiculated result for the case
where the gravitational acceleration, g, is reduced to
zero, which is equivalent to crystal growth under the
microgravity condition. As shown, natural convection
no longer exists in the melt zone. The very weak flow
loop inside the ring is induced by the upper surface
flow loop, and is counterclockwise in direction, the
stream function at the center of the loop being
Vmax = 9.4 x 10~ % g s~ ", Due to the absence of natural
convection in the melt, the melting and growth fronts
become more like the mirror image of each other. As
compared to Fig. 3(a), the zone length is essentially the
same near the free surface, but significantly shorter
near the centerline. Due to the absence of natural
convection, heat transfer from the ring to the center-
line of the melt zone is by conduction only. To avoid
freezing at the centerline, either the length or the tem-
perature of the ring should be increased.

CONCLUSIONS

Computer simulation has been conducted to study
heat transfer and fluid flow in the melt zone in a
modified floating-zone crystal growth process, in
which a heated ring covers most of the surface of the
melt zone. The conclusions are as follows :

(1) The computer model agrees well with the
observed lengths of the free surface near the growth
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front, and the measured axial temperature distri-
bution in a crystal.

(2) Thermocapillary convection is limited to near
the free surface of the melt zone, and is significantly
weaker than that in the conventional floating-zone
process.

(3) Both thermocapillary convection and natural
convection increase with increasing temperature of
the ring.

(4) The length of the melt zone at its centerline is
affected significantly by the extent of natural con-
vection inside the ring. This length is significantly
reduced under microgravity.
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TRANSFERT THERMIQUE ET MOUVEMENT FLUIDE DANS LA CROISSANCE D’UNE
ZONE CRISTALLINE FLOTTANTE AVEC UNE SURFACE DE BAIN PARTIELLEMENT
COUVERTE

Résumé—On conduit une simulation numérique du mécanisme de croissance d’une zone cristalline flottante,
dans laquelle la surface du bain est partiellement couverte par un anneau chauffé. On considére la croissance
de cristaux uniques de NaNO;, de 6 mm de diamétre, et les effets des paramétres suivants sont étudiés: (1)
température de 'anneau, (2) vitesse de croissance, (3) coefficient de température de la tension interfaciale
du bain, (4) coeflicient de dilatation thermique du bain et (5) pesanteur. On montre que la convection
thermocapillaire dans la zone fondue est significativement réduite dans ce mécanisme modifié. Le modéle
est favorablement testé par les longueurs mesurées du ménisque prés du front de croissance et par la
distribution de température dans le cristal.

WARMEUBERGANG UND STROMUNG BEIM WACHSTUM SCHWEBENDER
KRISTALLE MIT GROSSTENTEILS BEDECKTER OBERFLACHE DER SCHMELZE

Zusammenfassung—M it Hilfe einer Rechnersimulation wird ein modifizierter ProzeB des Wachstums
schwebender Kristalle untersucht, bei dem die Oberfliche der Schmelze gr6Btenteils mit einem beheizten
Ring bedeckt ist. Es wird das Wachstum eines NaNO;-Einkristalls (Durchmesser 6 mm) betrachtet. Der
EinfluB folgender Parameter wird untersucht: (1) Temperatur des Rings, (2) Wachstumsgeschwindigkeit,
(3) Temperaturkoeffizient der Oberflichenspannung der Schmelze, (4) thermischer Ausdehnungskoeffizient
der Schmelze und (5) Schwerkraft. Es wird gezeigt, daB die durch Kapillarkrifte angetriebene Konvektion
in der Schmelzzone signifikant durch dieses Verfahren verringert wird. Das Modell wird anhand von
MefBdaten fiir die Lange des Meniskus in der Ndhe der Wachstumsfront sowie die axiale Temperatur-
verteilung in einem wachsenden Kristall verglichen, wobei sich gute Ubereinstimmung ergibt.

TEIUIONNEPEHOC U TEYEHHUE XUIKOCTH IMTPU POCTE KPUCTAJIJIA B 30HE
®JIOTALIUU C TTOYTH TMOJHOCTHIO ITOKPLITONU TIOBEPXHOCTHIO PACILUIABA

Amnsoramms—IIpoBeneHo Moaenuposanue Ha 9BM Moau¢HIMpoBaHHOrO npolecca pocTa KPACTaL1a B
30He (IOTALMH, IPH KOTOPOM IIOBEPXHOCTH PACIUIaBa [OYTH IOJIHOCTBIO NMOKPHITa HATPEThIM KOJIBLIOM.
PaccMaTpHBAaJIHChL pOCT eMHEYHBIX KpHcTaswsioB NaNO, mmamerpoM 6 MM, a Takke BJIMSHHE Ha
Npouecc CreAyIolmX napaMeTpos: (1) TeMaepaTypsl KoJjbIa, (2) CKOPOCTH pOCTa KpHCTauia, (3) koag-
(brIMeHTa NOBEPXHOCTHOTO HATKEHHsS PacIUiana, (4) koadduumeHTa TEIUIOBOTO paciMpeHHs pacniasa
# (5) canl Taxectn. [lokasaHo, ¥TO NpH JaHHOM MOAH(GHIEPOBAHHOM NpOLECCE TEPMOKAaNHWUIApHas
KOHBEKIIMs B 30HE pacIUlaBa CYIIECTBEHHO yMeHbwaeTc. IToydeHo Xxopoliee CorjacHe MEXIy pe3yJib-
TaTaMH NpesIoKEHHON MOMEIH M HCMEPEHHBIMH JJIHHAMH MEHHCKa BOIH34 GpoHTA pocTa M axcHasb-
HBIM pacnpe/ieJieHHEM TEMIEPATyp B PacTyllleM KpHCTAILIE.



